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Abstract.

This research investigates the impact of the training and testing ratios on the
performance of an Al-Based Malware Detector using MATLAB. The experiments
through MATLAB have shown that higher training percentage means that a larger
portion of dataset for training the model have been used while a lower training
percentage shows that a large portion of the dataset reserved for testing the model’s
performance. The exploration of the influence of training and testing ratios also have
been able to determine the performance of an Al-Based Malware Detector. The results
give to determining the relationship between training and testing ratios and the
effectiveness of the malware detection system.
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Introduction

The era of artificial intelligence opens the possibility of doing things in the blink of an
eye. Although we are just starting to embrace this technology, sooner or later, all of
the manual stuff will be a thing of the past. With so many applications using Al, the
possibility of exploitation of IP addresses and other credentials will be much easier
than before. Traditional signature-based detectors and behavior-based methods will
be less effective in the coming days. As a result, there is a need for new approaches to
malware detection that can identify Al-powered malware and protect computer
systems from its harmful effects. This malware driven by Al will be more powerful, so
security for end devices and networks must prioritize. Cybersecurity threats are also
becoming increasingly common and sophisticated. Malware, in particular, has become
a pervasive and damaging form of cyber attack that can compromise the security of
computer systems and data. Traditional signature-based malware detection
approaches are no longer effective against advanced and evolving malware.
Therefore, developing new and more robust malware detection methods is of critical
importance. These methods depend on the training and testing of datasets to evaluate
the performance. The primarily concern is the ratio of the training and testing on the
performance of an Al-Based Malware Detector. To resolve this dilemma, an
investigation of the impact of the testing and training ratio of the performance of an Al
-powered malware detector is proposed. The objective of this study is to evaluate the
effectiveness of our malware detector in detecting malware through determining the
impact of the testing and training of datasets in a real-world setting. Specifically, we
aim to compare the performance of our detector with existing malware detection
methods and demonstrate its effectiveness in detecting unknown and new malware
variants. The researcher utilizes an Al-powered malware detector using MATLAB, a
popular software tool for scientific computing and machine learning. The researcher’s
goal is to evaluate the machine learning models that can accurately detect Al-powered
malware by analyzing various features of malicious code. By leveraging the power of
MATLAB, the researcher aims to create a robust and effective malware detection
system that can adapt to new and emerging threats. In obtaining an Al-powered
malware detection system, dataset collection from various sources is the first thing to
do. The researcher will then preprocess and analyze the dataset to extract relevant
features that could train and evaluate machine learning models. The researcher will
explore various machine learning algorithms, including deep learning, and evaluates
their performance in detecting Al-powered malware. The proposed Al-powered
malware detector has several potential applications, including improving the security of
computer networks. This proposal will also enhance the effectiveness of antivirus
software and protect individuals and organizations from cyber threats. The results of
this study can also provide insights into the capabilities of Al-powered malware and
inform the development of new strategies for cybersecurity.
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Methodology

The MATLAB Simulation is used in investigating the impact of the testing and training
ratio of the performance of an Al-Based malware detection techniques.

A. MATLAB Code for Malware Detection

The effectiveness of the algorithm using MATLAB will greatly depend on the dataset
quality. Based on the codes below, malware detection system uses more advanced and
sophisticated techniques.

% Malware Detection
% Step 1. Load the dataset
load('malware_dataset.mat'); % Assuming you have a preprocessed dataset

% Step 2: Split the dataset into training and testing sets
splitRatio = 0.8; % 80% for training, 20% for testing
splitindex = round(splitRatio * size(dataset, 1));
trainingData = dataset(1:splitindex, :);
testingData = dataset(splitindex+1:end, :);
% Step 3: Train the classifier
classifier = fitensemble(trainingData(:, 1:end-1), trainingData(;, end),
'AdaBoostM1', 100, 'Tree'); % Example classifier, you can choose a different one
% Step 4: Test the classifier
predictions = predict(classifier, testingData(:, 1:end-1));
% Step 5: Evaluate the performance
actualLabels = testingData(;, end);
accuracy = sum(predictions == actualLabels) / numel(actualLabels);
fprintf('Accuracy: %.2f%%\n', accuracy * 100);
% Step 6: Display the confusion matrix
confusionMat = confusionmat(actualLabels, predictions);
disp('Confusion Matrix:");
disp(confusionMat);

The code also assumes that a preprocessed dataset named malware_dataset.mat
contained feature vectors and corresponding labels (O for clean files and 1 for malware
files). The code splits the testing and training of dataset using an 80:20 ratio. It then
trains an ensemble classifier on the testing data. Accuracy percentage and Confusion
Matrix can also be computed with the actual labels.

B. Dataset for Testing purposes using MATLAB
A dataset has been collected, created and loaded in MATLAB for Testing purposes.

% Example Malware Dataset - MATLAB Code

% Generate synthetic data

numSamples = 1000; % Number of samples in the dataset
numFeatures = 10; % Number of features for each sample
% Create feature matrix

features = rand(numSamples, numFeatures);

% Create label vector

labels = randi([0, 1], numSamples, 1); % Random labels (O or 1) %
Combine features and labels into a dataset matrix
dataset = [features, labels];

% Save the dataset as a MATLAB .mat file
save('malware_dataset.mat', 'dataset’);

The example code consists of 1000 samples, where each sample has 10 randomly
generated features. The labels are randomly assigned as either O or 1. The feature
matrix features has dimensions numSamples x numFeatures, and the label vector labels
has dimensions numSamples x 1. The dataset matrix dataset combines the features and
labels into a single matrix with dimensions numSamples x (numFeatures + 1).
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C. Research Design

The accuracy and performance of the Artificial Intelligence Model is also presented in
this paper. The researcher used a framework that can train and test datasets for
investigating its impact in determining the performance of an Al Based Malware
detector.
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Fig. 1. Block Diagram of Al-Based Malware Detector

Figure 1 shows the Block Diagram of the Al Based Malware Detector. Initially, dataset
must be prepared for analysis, which may include task such as feature selection or
handling missing values. Then it compasses the techniques used to extract features
from the malware samples, then at the training phase, a machine learning algorithm is
used using training dataset. Model selection and training iterations were used in training
dataset. Then, after the training stage, it will undergo under testing stage, where the
trained model is evaluated using the testing dataset. The performance evaluation of the
Al-Based Malware Detector can be done using the Evaluation Metrics. At the final stage,
this section relates to the investigation of different training and testing ratios and its
impact on the malware detector performance. The researcher will also train Artificial
Intelligence Model to develop an effective malware detection model that can accurately
distinguish between clean and malicious files. Convolutional Neural Network (CNN) is
selected by the proponent as the artificial intelligence model. Since CNNs have been
widely used in image classification, which can also be applicable in malware detection.
The steps in using CNN for malware detection are shown in the figure 2.
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Fig. 2. Using CNN for Malware Detection

Initially, it allows for preparing dataset of clean and with malware samples. It should
be properly determined that must be classified clean or malware. Then dataset should
be preprocess, making it suitable in a CNN training format. This can be applied to
malwares particularly by resizing its images to a consistent size, normalizing pixel values
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and by dataset augmentation. Rotation and cropping are effective in increasing its
variablility. Dataset should be divided into training and validation. The CNN architecture
involved in this design is stacking convolutional layers, pooling layers and fully
connected layers. During training, the model adjusts its internal weights using
optimization techniques such as stochastic gradient descent (SGD) or Adam
optimization to minimize the loss function. The model iteratively processes the training
samples, updates the weights, and learns to classify clean and malware samples
correctly. Also, fine tuning the hyperparameters of the CNN such as the learning rate,
batch size and number of layers, helps the optimization of the performance model.
Then the researcher evaluates the trained CNN using the testing set. Performance
metrics such as accuracy, precision, recall, or F1 score are used to assess the model's
effectiveness in malware detection. Once the client is satisfied with the performance of
the| CNN, this can be now deployed to classify new and unseen samples as clean or
malware.

It is worth noting that CNNs might require a significant amount of training data and
computational resources.

Overall, CNNs have shown promising results in various domains, including image-
based tasks, and can be a powerful choice for Al-based malware detection. Based on
the MATLAB Codes to train a CNN for malware detection:

% Load and preprocess the dataset (assuming you have preprocessed the
data)

% X_train: Training data (images)

% y_train: Training labels (O for clean, 1 for malware)
% X_test: Testing data

% y_test: Testing labels

% Define the CNN architecture

layers = [ imagelnputLayer([32 32 3]) % Input layer, assuming images are
RGB and of size 32x32

convolution2dLayer(3, 32, 'Padding’, 'same') % Convolutional layer with 32
filters, filter size 3x3

reluLayer() % ReLU activation

maxPooling2dLayer(2, 'Stride', 2) % Max pooling layer with 2x2 pooling size and
stride 2

convolution2dLayer(3, 64, 'Padding', 'same') % Another convolutional layer
with 64 filters

reluLayer()
maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(64) % Fully connected layer with 64 neurons
reluLayer()

fullyConnectedLayer(2) % Output layer with 2 neurons (clean or malware)

softmaxLayer() % Softmax activation for classification
classificationLayer() % Classification layer

5;

% Specify training options

options = trainingOptions(‘adam’, ...
'MaxEpochs', 10, ...

'MiniBatchSize', 32, ...
'ValidationData', {X_test, y_test}, ...
'Plots', 'training-progress');

% Train the CNN

net = trainNetwork(X_train, categorical(y_train), layers,
options); % Evaluate the trained CNN
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y_pred = classify(net, X_test);

accuracy = sum(y_pred == categorical(y_test)) / numel
(y_test); fprintf('Accuracy: %.2f%%\n', accuracy * 100);

Results and Discussion

A. Confusion Matrix

The confusion matrix is a square matrix that provides a summary of the classifier's
performance by counting the number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). The confusion matrix is typically used in binary
classification problems, where each class is labeled as either positive or negative (in this
case, clean or malware). It helps in understanding the classifier's ability to correctly
classify the samples.

The confusion matrix is displayed using the ‘disp’ function in the MATLAB.
confusionMat = confusionmat(actualLabels, predictions);

disp('Confusion Matrix:');

disp(confusionMat);

Accuracy: 50.00%

Confusion Matrix:

5343

57 47

The top-left value (53) represents the number of true negatives (TN), indicating the
number of clean files correctly classified as clean.

While the top-right value (43) represents the number of false positives (FP),
indicating the number of clean files incorrectly classified as malware.

The bottom-left value (57) represents the number of false negatives (FN), indicating
the number of malware files incorrectly classified as clean and the bottom-right value
(47) represents the number of true positives (TP), indicating the number of malware
files correctly classified as malware.

The accuracy of the classifier is calculated as the ratio of correct predictions to the
total number of samples, resulting in an accuracy of 50.00%. It shows the number of
samples that were correctly or incorrectly classified into their respective classes.

B. Dataset Training and Testing Results

The training and testing split to 50% each, it means that the researcher used 50% of
the dataset for training the model and the remaining 50% for testing the model's
performance. By running the code and computing the confusion matrix with this split,
the confusion matrix and accuracy will reflect the performance of the model on the test
dataset. The specific values in the confusion matrix and the accuracy will vary based on
the characteristics of your dataset and the performance of your model. The confusion
matrix will show the number of samples that fall into each category, indicating the true
negatives (TN), false positives (FP), false negatives (FN), and true positives (TP). The
accuracy will represent the ratio of correct predictions to the total number of samples.
By using a 50% training and 50% testing split, you can assess how well the model
generalizes to unseen data and evaluate its performance in a more balanced manner. It
provides a fair evaluation by testing the model on an independent dataset that was not
used for training. The choice of the training and testing split is a design decision, and it
depends on factors such as the size of the dataset, the complexity of the problem, and
the desired trade-off between training and testing performance.

confusionMat = confusionmat(actualLabels, predictions);
disp('Confusion Matrix:");
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disp(confusionMat);
Accuracy: 52.20%
Confusion Matrix:
140 98

141121

After training and testing the model, the confusion matrix is computed using the
confusionmat function in MATLAB. The confusionmat function takes the actual labels
(actualLabels) and predicted labels (predictions) as inputs and generates the confusion
matrix.

The top-left value (140) represents the number of true negatives (TN), indicating the
number of clean files correctly classified as clean.

The top-right value (98) represents the number of false positives (FP), indicating the
number of clean files incorrectly classified as malware. The bottom-left value (141)
represents the number of false negatives (FN), indicating the number of malware files
incorrectly classified as clean.

The bottom-right value (121) represents the number of true positives (TP), indicating
the number of malware files correctly classified as malware. In this case, the accuracy
of the model is calculated as the ratio of correct predictions to the total number of
samples, resulting in an accuracy of 52.20%.

The confusion matrix provides a detailed breakdown of the classification results. In
this case, the confusion matrix reveals the following:

True Negatives (TN): The model correctly classified 140 clean files as clean. False
Positives (FP): The model incorrectly classified 98 clean files as malware. False
Negatives (FN): The model incorrectly classified 141 malware files as clean. True
Positives (TP): The model correctly classified 121 malware files as malware. The accuracy
of the model is calculated by summing the number of correct predictions (TN + TP) and
dividing it by the total number of samples. In this case, the accuracy is determined to
be 52.20%, indicating that the model's predictions were correct for approximately
52.20% of the total samples.

Then the training and testing is divided into 70% and 30%, respectively, meaning
that 70% of the dataset is used for training the model, and 30% is used for testing the
model's performance. After training and testing the model, the confusion matrix is
computed and generates the confusion matrix.

The confusion matrix is then displayed below:
Accuracy: 49.33%
Confusion Matrix:
76 75
77 72
The confusion matrix reveals the following:
True Negatives (TN): The model correctly classified 76 samples as negative (e.g.,
clean files).
False Positives (FP): The model incorrectly classified 75 samples as positive (e.qg.,
malware files) when they were actually negative.
False Negatives (FN): The model incorrectly classified 77 samples as negative
when they were actually positive.
True Positives (TP): The model correctly classified 72 samples as positive.
The accuracy of the model is calculated by summing the number of correct
predictions (TN + TP) and dividing it by the total number of samples. In this case,
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the accuracy is determined to be 49.33%, indicating that the model's predictions
were correct for approximately 49.33% of the total samples.
Review of Related Literature

A. Definition of Malwares, Artificial Intelligence (Al) and its applications in malware
detection

Malwares, or malicious software, are programs that are created by hackers with the
bad intention to compromise systems and premises. Unlike the unintentional errors in
software, malware is used by hackers and attackers with wrong intent, variously using
malwares such as viruses, worms, trojans, surveillance software (spyware) and
ransomware (where the threat agent gets of your information and demands money to
be able to get access back to your data).

In Figure 3, a volumetric attack is shown, the network is flooded with extreme traffic
volumes at once which overloads the network, much the same way car traffic can
overload city streets. According to Michael Karpowicz, director of research at NASK,
“DDoS cyberattacks are meant to generate chaos, disrupt institutions, and of course
cause financial losses. Traditional Malware Detection Methods. He also describes the
problem using a familiar scenario. Imagine you’re driving to the bank. There’s little
traffic and everything is going smoothly until you reach the final intersection. Suddenly,
everything jams up and you must wait. That’s a volumetric attack. Now imagine you
have finally arrived at the bank and are standing in line for the teller. You notice that the
customer in front of you has an unusual issue that requires the attention of every bank
employee. Again, you must wait. That’s an application attack. In a typical DDoS attack,
a culprit uses many computers and online devices infected with a designed malware.
These devices can include gadgets on the Internet of Things (I0T) devices.

Fig. 3. Scenario of a Volumetric Attack

Al can be used in new innovations like blockchain, loT, artificial intelligence, robots,
and many other things. Security is one of the top issues for people who are using
computer devices, and everyone wants to feel completely secure when traveling
around every single day. (1)
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B. Advantages and potential of using Al in malware detection

Hackers and cyber criminals are already updating their methodologies in detecting
and intruding premises. The malwares are propagation by adversaries. There were
many issues across the globe. Often it is found that malware is released in different
countries for monetary gains. With the proliferation of malware spreading activities, it is
made possible that now we have malware patterns that are used for training machine
learning models. (2)

Artificial Intelligence (Al) can be used in advantage since hackers were also using Al
in creating malicious codes. According to Sean Gallagher, a Principal Threat Researcher,
from Sophos X-Ops, there are three Sophos Al projects that harness the model behind
ChatGPT for better detection of malicious activity. The latest version of the Generative
Pre-trained Transformer (GPT) model, GPT-3.5—the algorithmic brain of ChatGPT—has
generated waves of both amazement and concern. Among those concerns is how it
could be used for malicious purposes, including generating convincing phishing emails
and even malware. According to Sophos Al Principal Data Scientist Younghoo Lee, the
Sophos X-Ops researchers, have been examining ways to use an earlier version, GPT-3,
as a force for good. He also presented some early insights into how GPT-3 could be
used to generate human-readable explanations of attacker behavior.

C. Different Kinds of Malwares

To detect the malwares effectively, it is also important to know the different kinds
of malwares. The malware needs to be detected before it affects a large number of
systems. Recently, there have been made several studies on malware detection
approaches. However, the detection of malware still remains problematic. Signature-
based and heuristic-based detection approaches are efficient to detect known
malware, but especially signature-based detection approach has failed to detect
unknown malware. On the other hand, behavior based, model checking-based, and
cloud-based approaches perform well for unknown and complicated malware; and
deep learning-based, mobile devices based, and loT-based approaches also emerge to
detect some portion of known and unknown malware. (3)

Malwares exist in different forms; they are broadly categorized in following classes.
They are not mutually exclusive although many of them exist in more than one class.
Virus: It infects computers and other files by replicating itself. It cannot exist
independently so it attaches with other files more precisely executable files and
application and due to its replicating features, it spread across files and even
computers through network.it cause system performance degradation and denial of
service. (4). Other malware are Worms: These are malicious piece of code that exist
independently. they have feature to replicate itself. They propagate through storage
devices and emails, also consume network and computer resources which leads to
system degradation in performance. As they can create multiple copies of themselves,
antivirus scanners can identify these codes because of multiple existence. (5) Trojan
Horse behaves like a useful program but it has harmful purpose. They do not replicate
themselves but it transferred in a computer by internet interaction like downloading. It
steals sensitive information, observe activity of users and can delete and alter or
corrupt files on the system where it resides. (6) Rootkit takes control of the operating
system such that it can hide itself or can make a safe environment for other malwares
to hide in the system. Basically, it a masking technique to cheat antivirus so that they
cannot find malwares in the system and consider them as normal applications. The
Spyware are used to steal someone personal information or keep the watch on user’s
activities. It is installed without the knowledge of system owner and secretly collect the
information and send it back to the creator. Even company with big names like google
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also use spyware to collect the required information of their users. [7]
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